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Abstract 
 
One of the problems of highly distributed systems is figuring out how systems discover each 
other. After all, the whole point of having distributed systems is to allow flexible and perhaps even 
dynamic configurations to maximize system performance and availability. So how do these 
distributed components of one system or multiple systems discover each other? Furthermore, 
once these systems are discovered how do we allow enough flexibility, such as rediscovery, so 
as to allow fail-safe operation of such systems? Space based programming may provide us with a 
very good answer to these questions and more. 
 
This article describes what a space is and how it may be used towards mitigating some of the 
issues mentioned above. It then discusses a technique of converting an ordinary message queue 
into a space. A list of resources is provided at the end of the article for readers interested in 
learning more about space-based programming and applications. 
 

What is a Space? 
 
Conventional distributed tools rely on passing messages between processes (asynchronous 
communication) or invoking methods on remote objects (synchronous communication). A space 
is an extension of the asynchronous communication model in which two processes are not 
passing messages to one another. In fact the processes are totally unaware of each other.  
 
Let’s look at figure 1 for a moment. Process 1 places a message into the space. Process 2, which 
has been waiting for this type of message, takes the message out the space. Process 2 
processes the message and based on the results places another message into the space. 
Process 3, which has been waiting for this type of message, takes this message out of the space.  
 
Following are the highlights of the preceding discussion: 
 

1. The space may contain different types of messages. In fact I used the term “message” for 
clarity. These messages are actually just “things”, i.e. the message may be an object, an 
XML document, or anything else that the space allows to be put in it. In figure 1 the 
different shapes in the space illustrate the different types of messages. 

2. The three processes involved have no knowledge of one another. All they know is that 
they put a message in a space and get a message out of the space.  

3. As in the message passing scenario, we are not limited to two processes communicating 
asynchronously, but rather any number of processes may communicate via a common 
space. This allows the creation of extremely loosely coupled systems that can be highly 
distributed, extremely flexible, and can provide high availability and dynamic load 
balancing. 
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Figure 1 
 
 
 
Let’s look at a more specific example this time. A common encryption method is the use of “one-
way” functions, which take an input and like any other function generate an output. The 
distinguishing feature of such functions is that it is extremely difficult to compute the input that 
was given to the function to get the output, i.e. to compute the inverse of the function. Hence, the 
term “one-way” function. So, instead of trying to figure out the inverse of the function to get the 
input required for the given output, an easier way may be to take all possible inputs and compute 
the output for each input. When we get an output that matches the one we have, we have found 
the right “input”. But this can be extremely time consuming gi ven the vast number of possible 
inputs. Let’s assume that passwords cannot be more than four characters in length and only 
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alphanumeric ASCII characters1 are used. This gives us 14776336 possible passwords2. 
Furthermore, let’s use the “brute” force techniq ue to break the password. Assume that the main 
program breaks the input set into 16 pieces and puts each piece along with the encrypted 
password in the space. The password-breaking programs are watching the space for such pieces 
and each available program immediately grabs a piece and starts working. The programs 
continue till there are no more such pieces available or until the password has been broken. If the 
password is broken, the breaking program puts the solution in the space, which is picked up by 
the main program. The main program then proceeds to pick up all the remaining pieces, since it 
has already found the solution it needs. The main program never knew how many password-
breaking programs were available nor did it know where these were located. The password-
breaking programs had no knowledge about one another or about the main program. If there 
were 16 password-breaking programs available and each one was on a separate machine, we 
would have had 16 machines working on breaking the password simultaneously! Also, to add 
new password-breaking programs, no change to any configuration of the system is required. This 
is why spaces are so good for fault-tolerance, load balancing, and scalability.  
 
As seen above, spaces provide an extremely powerful concep t/mechanism to decouple 
cooperating or dependent systems. The concept of a space is not new. “Tuple spaces” were first 
described in 1982, in context of a programming language called “Linda”. Linda consisted of 
“tuples”, which were collections of data grouped together, and the “tuple space”, which was the 
“shared blackboard” from which applications could place and retrieve tuples. However, the 
concept never gained much popularity outside of academia. Today, spaces may be an elegant 
solution to many of the tr aditional distributed computing dilemmas. In fact in recognition of this 
fact, JavaSoft has created its own implementation of the space concept called “JavaSpaces” and 
IBM has created “T Spaces”, which is much more functional and complex than JavaSoft’s 
JavaSpaces. We will not be discussing IBM’s T Spaces in this article.  
 
We are now in a position to describe some of the key characteristics of a space:  
 
1. Spaces provide shared access. 
A space provides a network-accessible “shared memory” that can be accessed by many shared 
remote/local processes concurrently. The space handles all issues regarding concurrent access, 
allowing the processes to focus on their task at hand. At the very least spaces provide processes 
with the ability to place and retrieve “things”.  Some spaces also provide the ability to read/peek 
“things”, i.e. to get the “thing” without actually removing it from the space, thus allowing other 
processes to access it as well. 
 
2. Spaces are persistent. 
A space provides reliable storage for processes to place “things”. These “things” may outlive the 
processes that created them. This allows the dependent/cooperating processes to work together 
even when they have non-overlapping lifecycles. This boosts the fault -tolerance and high 
availability capability o f distributed systems. 
 
3. Spaces are associative. 
Associative lookup provides processes a way to “find” the “things” that they are interested in. 
Since many processes may be using/sharing the same space, there may be many different types 
of “things” in the space. It is important that processes are able to get the things that they require 
without needing to filter out all the “noise” themselves. Spaces allow this by allowing processes to 
define filters/templates that instruct/direct the space to “find” the rig ht “things” for that process. 
 
These are just a few key characteristics of spaces. Many commercial space implementations, 
such as the ones from JavaSoft and IBM, have additional characteristics such as the ability to 
perform “transacted” operations on the space. 
                                                
1 Hence the character set is [0… 9, a… z, A… Z] 
2 Number of passwords = (62)4 = 14776336 
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JavaSoft’s Implementation: JavaSpaces 
 
JavaSpaces technology is a new realization of the “tuple spaces” concept described above. It is 
an implementation that is available freely from JavaSoft. JavaSpaces is built on top of another 
complex technology called Jini. In a nutshell Jini is a Java based technology that allows any 
device to become network aware. Jini provides a complex yet elegant programming model that 
realizes the Jini team’s vision of “Network anything, anytime, anywhere”. The goal of Ja vaSpaces 
is to provide what might be thought of as a “file system for objects”. Like every other JavaSoft 
API, JavaSpaces provides a simple yet powerful set of features to developers. However, there 
are some drawbacks to JavaSpaces as I see it. First of al l, the implementation of JavaSpaces 
available from JavaSoft is fairly complex to install to say the least. Secondly, the fact that it builds 
on top of Jini makes it a little too heavy, especially if there are no plans to use Jini elsewhere in 
the project. Thirdly, JavaSpaces relies on Java RMI. The suitability of Java RMI for highly 
scalable commercial applications is a topic of debate among many software gurus. Fourthly and 
finally, JavaSpaces only works with serializable Java objects.  
 

Creating your own space implementation 
 
As discussed above, there are commercial implementations of spaces available in the market. 
However, there are several reasons for creating your own. If you work in a start -up company, 
budget constraints may be a big reason. Also, the functionality offered by a commercial 
implementation may just be too much for the job at hand. Not only may this result in a larger 
learning curve, it may even slow your application down due to the sheer size of the memory 
footprint. Finally, it’s always fun creating your own implementation 3☺.  
 
At Online Insight, we decided to create our own implementation. The primary reasons for our 
decision were our limited set of requirements and the extremely lightweight implementation 4 that 
we required for achieving our scalability and performance goals.  
 
Our requirements can be summarized as follows: 
  

• The space must support shared access. 
• The space must be persistent. 
• The space must provide the ability to specify a filtering template.  
• The space must allow one “thing” in the space to be accessed by only one 

process/application at a time i.e. we do not support the “read” operation.  
• The space must perform and scale well under load5.  
• The space must be accessible to other CORBA objects. 
• The space must be not impose a limitation to what you can put in it 6. 
• The space must not impose size limitations on what you put in it 7. 

 
Note that the first three requirements are also key characteristics of a space.  
 

                                                
3 Take this with a grain of salt. This comment is not meant to stir up the whole Buy Vs Build debate. 
4 Even though IBM T Spaces are lightweight, our implementation is even lighter at the cost of limiting 
some functionality that we do not require anyway. 
5 For requirements fanatics, this may be a little bit too vague. 
6 Unlike JavaSpaces for example. 
7 Note however that the underlying hardware, e.g. Disk space, available memory, etc. may impose a 
limitation. 
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At the same time, we were evaluating message queue type software, mo re specifically, Java 
Message Service (JMS) implementations, when we realized that we could build our space facility 
on top of one of these queues. 
 
JMS is an API for accessing enterprise-messaging systems from Java programs. JMS defines a 
common set of enterprise messaging concepts and facilities. It attempts to minimize the set of 
concepts a Java language programmer must learn to use enterprise-messaging products, such 
as IBM MQSeries. It strives to maximize the portability of messaging applications. JMS does not 
however address load balancing/fault tolerance, error notification, administration of the message 
queue, or security issues. These are all message queue vendor specific and outside the domain 
of the JMS. 
 
By using message queues that expose a JMS interface, we allow ourselves the flexibility to 
switch vendors of message queues in case we discover that they do not meet our scalability 
requirements. This separation of implementation from interface is an important design pattern 8. 
Since each JMS implementation has its own unique way of getting the initial connection factory, 
we defined a Java interface with one method “getConnectionFactory” that returns the initial 
connection factory. Each space is configured through a properties file. One property in this 
properties file is the fully qualified 9 name of the class that implements this interface. There is one 
such class for each JMS implementation supported by the space. For example, we created one 
class for Sun’s Java Message Queue, and one for Progress Software’s SonicMQ. By doing this, 
changing the underlying message queue used by the space is simply a matter of changing the 
name of the Java class in the properties file for the space. Therefore, if one vendor’s message 
queue does not live up to our expectations we can quickly switch to another one. 
 
The space implementation itself is a CORBA object that has the following interface  
 
interface Space  
{                    

void write(in ByteStream blob) raises (SpaceException);  
      ByteStream take() raises (SpaceException); 
      void write_filter(in ByteStream blob, in FilterSeq f)  

raises (SpaceException); 
      ByteStream take_filter(in FilterSeq f) raises (SpaceException);  
      ByteStream take_filter_as_string(in string f)  

raises (SpaceException); 
            
      void shutdown(); 
}; 
 
The type ByteStream simply evaluates to a stream of bytes. Hence anything that can be 
represented as a stream of bytes, such as a CORBA object IOR, a serialized Java object, an 
XML document, etc. can be stored in the space and retrieved.  
 
Each space instance has three properties: a name, a property that indicates if this instance of the 
space is persistent, and a property that indicates if this instance of the space allows filters. The 
reason there are properties to turn the persistence and filtering off is purely for performance. Not 
all spaces in our application domain are required to be persistent, in which case persistence is a 
performance bottleneck because it involves writing out to a database or similar storage 
mechanism. Similarly, if filtering is not required it is a performance bottleneck. As mentioned 
above, each space is configured through a properties file. This properties file has the property 

                                                
8 See the Bridge design pattern in Design Patterns, Elements of Reusable Object-Oriented Software, 
Gamma et al.  
9 name of the class with the package names included in dot notation 
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indicating the space name, the persistence status (on/off), and the filtering status (on/off) of the 
space.  
 
An example of the properties file used in configuring the space is shown below:  
 
SpaceName=MySpace 
AllowFilter=true 
Persistent=true 
 
# The factory to use to get the initial Connection Factory  
SpaceFactory=SonicMQSpaceFactoryImpl 
 
The “SpaceName” property is the name of the space, “AllowFilter” is a boolean property where 
true means the space turns filter support on, and “Persistent” is a boolean property where true 
means the space turns persistence on. “SpaceFactory” is set to the fully qualified name of the 
class that allows us to get the initial connection factory from the message queue. In the example 
above this property is set to a class that works with Progress Software’s SonicMQ 
implementation. 
 
During start-up each space installs itself in the CORBA Name Service using its name property as 
the binding name and in the CORBA Trader Service with the name, persistence, and filter 
properties. Thus interested applications/processes can find a space by using a well-known name 
from the CORBA Name Service, or using the space properties from the CORBA Trader Service. 
For example, an application that wants filtering but is not interested in persistence can indicate 
these requirements to the CORBA Trader Service, which wil l then provide the application with a 
list of CORBA space references that match these requirements. The application may then choose 
one from that list based on some further screening.  
 
Our implementation of the space gains all of its persistence and filter ing capabilities from the 
underlying messaging queue provider. Our space is the only client of the message queue. Note 
that in our implementation the only purpose the message queue serves is as a high quality 
storage/retrieval mechanism that also provides filtering capabilities. We are not relying on the 
queuing facilities per se. 
 
Let’s describe each method of the CORBA interface in detail now.  
 
write 
This method is called by an application when it wants to put a stream of bytes into the space and 
does not want to attach filtering properties to this stream.  
 
write_filter 
This method is used by an application when it wants to put a stream of bytes into the space and 
wants to attach filtering properties to this stream. The type FilterSeq evaluates to an arra y of 
filters that are attached to that byte stream. A filter is a name -value pair. Hence, a FilterSeq is an 
array of name value pairs.  
 
take 
This method is called by an application when it wants to retrieve a stream of bytes from the 
space. No filtering is performed since none is specified. 
 
take_filter 
This method is called by an application when it wants to retrieve a stream of bytes from the 
space. However, in this case a FilterSeq is provided. In order for a match to occur the byte 
stream must have a subset of the filters provided in the method call and the value of each filter 
attached to the byte stream must match the value for the corresponding filter in the method call.  
take_filter_as_string 
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This method is called by an application when it wants to retrieve a stream of bytes from the 
space. In this case a string10 that specifies the exact filter is provided. In order for a match to 
occur the filter properties attached to the byte stream must satisfy the filter string provided in the 
method call. This method is used when the filtering conditions cannot be specified as a FilterSeq.  
 
shutdown 
This method is called to shutdown the space. The shutdown is clean, which means the 
registration with the Name Service and the Trader Service is removed.  
 
The space implements all methods in the interface as synchronized. Furthermore the take 
implementations are non-blocking i.e. if there is nothing to take the method returns with nothing.   

Conclusion 
 
Distributed applications can be notoriously difficult to design, build, and debug. The distributed 
environment introduces many complexities, which are not present while writing standalone 
applications. Some of these challenges include network latency, synchronization and 
concurrency, and partial failure. Space -based programming, although not a “silver bullet”, is an 
excellent concept that leads towards an elegant solution to these problems. Space-based 
programming takes us one step further towards achieving our goals in a distributed system, 
namely those of scalability, high availability, loose coupling, and performance. It also helps us in 
facing the challenges mentioned above. Best of all, you do not have to buy an expensive 
implementation to get started with this excellent concept. It’s fairly easy to create a homegrow n 
implementation that satisfies your requirements, and it’s fun too!  
 

Resources 
 

1. The Linda Group  at http://www.cs.yale.edu/HTML/YALE/CS/Linda/linda.html  
2. The JavaSpaces homepage at http://www.javasoft.com/products/javaspaces/  
3. IBM, T Spaces at http://www.almaden.ibm.com/cs/TSpaces/. 
4. Nicholas J. Carriero. Implementation of Tuple Space Machines. PhD thesis, Yale 

University, Department of Computer Science, 1987.  
5. Edward J. Segall. Tuple Space Operations: Multiple-Key Search, Online Matching and 

Wait-Free Synchronization. PhD thesis, Rutgers University, Department of Computer 
Science, 1993. 

6. Gul Agha, et al. ActorSpaces: An Open Distributed Programming Paradigm, University of 
Illinois at Urbana-Champaign, ULIUENG-92-1846. 

                                                
10 The syntax of this string is based on a subset of the SQL92 conditional expression syntax. Refer to the 
“Message Selector Syntax” in the JMS specification for details. 


